Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal transduction, and a single protein may play a role in multiple processes or cellular pathways. Generally, function can be thought of as, "anything that happens to or through a protein". The Gene Ontology Consortium provides a useful classification of functions, based on a dictionary of well-defined terms divided into three main categories of molecular function, biological process and cellular component. Researchers can query this database with a protein name or accession number to retrieve associated Gene Ontology (GO) terms or annotations based on computational or experimental evidence. While techniques such as microarray analysis, RNA interference, and the yeast two-hybrid system can be used to experimentally demonstrate the function of a protein, advances in sequencing technologies have made the rate at which proteins can be experimentally characterized much slower than the rate at which new sequences become available. Thus, the annotation of new sequences is mostly by prediction through computational methods, as these types of annotation can often be done quickly and for many genes or proteins at once. The first such methods inferred function based on homologous proteins with known functions (homology-based function prediction). The development of context-based and structure based methods have expanded what information can be predicted, and a combination of methods can now be used to get a picture of complete cellular pathways based on sequence data.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
BIO-315: Structural biology
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
CH-455: Methods in drug development
The course discusses methods in modern drug development. Each week, a short introduction to a drug development method / field is provided and a recent research paper is discussed in depth. Students pa
BIO-463: Genomics and bioinformatics
This course covers various data analysis approaches associated with applications of DNA sequencing technologies, from genome sequencing to quantifying gene evolution, gene expression, transcription fa
Afficher plus
Concepts associés (4)
Protein–protein interaction prediction
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex structures and for gaining insights into various biochemical processes.
Prédiction de gènes
En bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
Prédiction de la structure des protéines
La prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.