Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex structures and for gaining insights into various biochemical processes.
Experimentally, physical interactions between pairs of proteins can be inferred from a variety of techniques, including yeast two-hybrid systems, protein-fragment complementation assays (PCA), affinity purification/mass spectrometry, protein microarrays, fluorescence resonance energy transfer (FRET), and Microscale Thermophoresis (MST). Efforts to experimentally determine the interactome of numerous species are ongoing. Experimentally determined interactions usually provide the basis for computational methods to predict interactions, e.g. using homologous protein sequences across species. However, there are also methods that predict interactions de novo, without prior knowledge of existing interactions.
Proteins that interact are more likely to co-evolve, therefore, it is possible to make inferences about interactions between pairs of proteins based on their phylogenetic distances. It has also been observed in some cases that pairs of interacting proteins have fused orthologues in other organisms. In addition, a number of bound protein complexes have been structurally solved and can be used to identify the residues that mediate the interaction so that similar motifs can be located in other organisms.
The phylogenetic profile method is based on the hypothesis that if two or more proteins are concurrently present or absent across several genomes, then they are likely functionally related. Figure A illustrates a hypothetical situation in which proteins A and B are identified as functionally linked due to their identical phylogenetic profiles across 5 different genomes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
The course discusses methods in modern drug development. Each week, a short introduction to a drug development method / field is provided and a recent research paper is discussed in depth. Students pa
Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction.
En bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
In molecular biology, an interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, PPIs; or between small molecules and proteins) but can also describe sets of indirect interactions among genes (genetic interactions). The word "interactome" was originally coined in 1999 by a group of French scientists headed by Bernard Jacq.
Explore l'entropie, le caractère aléatoire et la quantification de l'information dans l'analyse des données biologiques, y compris les neurosciences et la prédiction de la structure des protéines.
In the domain of computational structural biology, predicting protein interactions based on molecular structure remains a pivotal challenge. This thesis delves into this challenge through a series of interconnected studies.The first chapter introduces the ...
Proteins are foundational biomolecules of life playing a crucial role in a myriad of biological processes. Their function often requires interplay with other biomolecules, including proteins themselves. Protein-protein interactions (PPIs) are essential for ...
EPFL2024
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...