Summary
In mathematics, an affine combination of x1, ..., xn is a linear combination such that Here, x1, ..., xn can be elements (vectors) of a vector space over a field K, and the coefficients are elements of K. The elements x1, ..., xn can also be points of a Euclidean space, and, more generally, of an affine space over a field K. In this case the are elements of K (or for a Euclidean space), and the affine combination is also a point. See for the definition in this case. This concept is fundamental in Euclidean geometry and affine geometry, because the set of all affine combinations of a set of points forms the smallest subspace containing the points, exactly as the linear combinations of a set of vectors form their linear span. The affine combinations commute with any affine transformation T in the sense that In particular, any affine combination of the fixed points of a given affine transformation is also a fixed point of , so the set of fixed points of forms an affine subspace (in 3D: a line or a plane, and the trivial cases, a point or the whole space). When a stochastic matrix, A, acts on a column vector, , the result is a column vector whose entries are affine combinations of with coefficients from the rows in A.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.