In mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S.
For example, two linearly independent vectors span a plane.
The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules.
To express that a vector space V is a linear span of a subset S, one commonly uses the following phrases—either: S spans V, S is a spanning set of V, V is spanned/generated by S, or S is a generator or generator set of V.
Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. W is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.
Alternatively, the span of S may be defined as the set of all finite linear combinations of elements (vectors) of S, which follows from the above definition.
In the case of infinite S, infinite linear combinations (i.e. where a combination may involve an infinite sum, assuming that such sums are defined somehow as in, say, a Banach space) are excluded by the definition; a generalization that allows these is not equivalent.
The real vector space has {(−1, 0, 0), (0, 1, 0), (0, 0, 1)} as a spanning set. This particular spanning set is also a basis. If (−1, 0, 0) were replaced by (1, 0, 0), it would also form the canonical basis of .
Another spanning set for the same space is given by {(1, 2, 3), (0, 1, 2), (−1, , 3), (1, 1, 1)}, but this set is not a basis, because it is linearly dependent.
The set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not a spanning set of , since its span is the space of all vectors in whose last component is zero.