**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Affine combination

Summary

In mathematics, an affine combination of x1, ..., xn is a linear combination
such that
Here, x1, ..., xn can be elements (vectors) of a vector space over a field K, and the coefficients are elements of K.
The elements x1, ..., xn can also be points of a Euclidean space, and, more generally, of an affine space over a field K. In this case the are elements of K (or for a Euclidean space), and the affine combination is also a point. See for the definition in this case.
This concept is fundamental in Euclidean geometry and affine geometry, because the set of all affine combinations of a set of points forms the smallest subspace containing the points, exactly as the linear combinations of a set of vectors form their linear span.
The affine combinations commute with any affine transformation T in the sense that
In particular, any affine combination of the fixed points of a given affine transformation is also a fixed point of , so the set of fixed points of forms an affine subspace (in 3D: a line or a plane, and the trivial cases, a point or the whole space).
When a stochastic matrix, A, acts on a column vector, , the result is a column vector whose entries are affine combinations of with coefficients from the rows in A.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (26)

Related people (38)

Related units (4)

Related concepts (4)

Related lectures (54)

Related publications (190)

Ontological neighbourhood

Conical combination

Given a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).

Convex combination

In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other words, the operation is equivalent to a standard weighted average, but whose weights are expressed as a percent of the total weight, instead of as a fraction of the count of the weights as in a standard weighted average.

Linear span

In mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S. For example, two linearly independent vectors span a plane. The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules.

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

MSE-423: Fundamentals of solid-state materials

Fundamentals of quantum mechanics as applied to atoms, molecules, and solids. Electronic, optical, and magnetic properties of solids.

AR-302(aj): Studio BA6 (Baumgartner et Camponovo)

STAY A LITTLE LONGER étudie les potentialités du bâti existant. Les outils de représentations du projet de transformation - Existant/Noir, Démolition/Jaune, Nouveau/Rouge -structureront l'exploration

, , , , , , , , ,

Covers linear equations, vectors, and matrices, exploring their fundamental concepts and applications.

Explores eigenvalues and modes in multivariable control systems, focusing on their analysis and behavior.

Explores the logic behind proofs, structures, and the scalability of solutions in counting and algorithms.

We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...

The present invention relates to systems and methods for predicting a prognosis of the neuropsychological and/or neuropsychiatric status in a subject based on reports of Minor Hallucination (MH) events in combination with electrophysiological data of the s ...

2024Matthieu Wyart, Carolina Brito Carvalho dos Santos

We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in ...