In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.
We start with the following data:
K is a number field.
[K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K.
ζK(s) is the Dedekind zeta function of K.
hK is the class number, the number of elements in the ideal class group of K.
RegK is the regulator of K.
wK is the number of roots of unity contained in K.
DK is the discriminant of the extension K/Q.
Then:
Theorem (Class Number Formula). ζK(s) converges absolutely for Re(s) > 1 and extends to a meromorphic function defined for all complex s with only one simple pole at s = 1, with residue
This is the most general "class number formula". In particular cases, for example when K is a cyclotomic extension of Q, there are particular and more refined class number formulas.
The idea of the proof of the class number formula is most easily seen when K = Q(i). In this case, the ring of integers in K is the Gaussian integers.
An elementary manipulation shows that the residue of the Dedekind zeta function at s = 1 is the average of the coefficients of the Dirichlet series representation of the Dedekind zeta function. The n-th coefficient of the Dirichlet series is essentially the number of representations of n as a sum of two squares of nonnegative integers. So one can compute the residue of the Dedekind zeta function at s = 1 by computing the average number of representations. As in the article on the Gauss circle problem, one can compute this by approximating the number of lattice points inside of a quarter circle centered at the origin, concluding that the residue is one quarter of pi.
The proof when K is an arbitrary imaginary quadratic number field is very similar.
In the general case, by Dirichlet's unit theorem, the group of units in the ring of integers of K is infinite.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Explores primes in arithmetic progression, focusing on L-functions, characters, and the divergence of the sum of 1 over p for p congruent to a modulo q.
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K.
In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that: Otherwise, q is called a quadratic nonresidue modulo n. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers.
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
SPRINGER HEIDELBERG2023
, ,
We propose a principled method for projecting an arbitrary square matrix to the non- convex set of asymptotically stable matrices. Leveraging ideas from large deviations theory, we show that this projection is optimal in an information-theoretic sense and ...