A conserved non-coding sequence (CNS) is a DNA sequence of noncoding DNA that is evolutionarily conserved. These sequences are of interest for their potential to regulate gene production.
CNSs in plants and animals are highly associated with transcription factor binding sites and other cis-acting regulatory elements. Conserved non-coding sequences can be important sites of evolutionary divergence as mutations in these regions may alter the regulation of conserved genes, producing species-specific patterns of gene expression. These features have made them an invaluable resource in comparative genomics.
All CNSs are likely to perform some function in order to have constraints on their evolution, but they can be distinguished based on where in the genome they are found and how they got there.
Introns are stretches of sequence found mostly in eukaryotic organisms which interrupt the coding regions of genes, with basepair lengths varying across three orders of magnitude. Intron sequences may be conserved, often because they contain expression regulating elements that put functional constraints on their evolution. Patterns of conserved introns between species of different kingdoms have been used to make inferences about intron density at different points in evolutionary history. This makes them an important resource for understanding the dynamics of intron gain and loss in eukaryotes (1,28).
Some of the most highly conserved noncoding regions are found in the untranslated regions (UTRs) at the 3' end of mature RNA transcripts, rather than in the introns. This suggests an important function operating at the post-transcriptional level. If these regions perform an important regulatory function, the increase in 3'-UTR length over evolutionary time suggests that conserved UTRs contribute to organism complexity. Regulatory motifs in UTRs often conserved in genes belonging to the same metabolic family could potentially be used to develop highly specific medicines that target RNA transcripts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cis-regulatory elements (CREs) or Cis''-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology. CREs are found in the vicinity of the genes that they regulate. CREs typically regulate gene transcription by binding to transcription factors.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify al ...
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual s ...