Concept

Dual (category theory)

Summary
In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about C, then its dual statement is true about Cop. Also, if a statement is false about C, then its dual has to be false about Cop. Given a C, it is often the case that the opposite category Cop per se is abstract. Cop need not be a category that arises from mathematical practice. In this case, another category D is also termed to be in duality with C if D and Cop are equivalent as categories. In the case when C and its opposite Cop are equivalent, such a category is self-dual. We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms. Let σ be any statement in this language. We form the dual σop as follows: Interchange each occurrence of "source" in σ with "target". Interchange the order of composing morphisms. That is, replace each occurrence of with Informally, these conditions state that the dual of a statement is formed by reversing arrows and compositions. Duality is the observation that σ is true for some category C if and only if σop is true for Cop. A morphism is a monomorphism if implies . Performing the dual operation, we get the statement that implies For a morphism , this is precisely what it means for f to be an epimorphism. In short, the property of being a monomorphism is dual to the property of being an epimorphism.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood