In mathematics, specifically , a subcategory of a C is a category S whose are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows.
Let C be a category. A subcategory S of C is given by
a subcollection of objects of C, denoted ob(S),
a subcollection of morphisms of C, denoted hom(S).
such that
for every X in ob(S), the identity morphism idX is in hom(S),
for every morphism f : X → Y in hom(S), both the source X and the target Y are in ob(S),
for every pair of morphisms f and g in hom(S) the composite f o g is in hom(S) whenever it is defined.
These conditions ensure that S is a category in its own right: its collection of objects is ob(S), its collection of morphisms is hom(S), and its identities and composition are as in C. There is an obvious faithful functor I : S → C, called the inclusion functor which takes objects and morphisms to themselves.
Let S be a subcategory of a category C. We say that S is a full subcategory of C if for each pair of objects X and Y of S,
A full subcategory is one that includes all morphisms in C between objects of S. For any collection of objects A in C, there is a unique full subcategory of C whose objects are those in A.
The category of finite sets forms a full subcategory of the .
The category whose objects are sets and whose morphisms are bijections forms a non-full subcategory of the category of sets.
The forms a full subcategory of the .
The category of rings (whose morphisms are unit-preserving ring homomorphisms) forms a non-full subcategory of the category of rngs.
For a field K, the category of K-vector spaces forms a full subcategory of the category of (left or right) K-modules.
Given a subcategory S of C, the inclusion functor I : S → C is both a faithful functor and injective on objects. It is full if and only if S is a full subcategory.
Some authors define an embedding to be a full and faithful functor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, the Ab has the abelian groups as and group homomorphisms as morphisms. This is the prototype of an : indeed, every can be embedded in Ab. The zero object of Ab is the trivial group {0} which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a of Grp, the .
In mathematics, specifically in , an additive category is a C admitting all finitary biproducts. There are two equivalent definitions of an additive category: One as a category equipped with additional structure, and another as a category equipped with no extra structure but whose objects and morphisms satisfy certain equations. A category C is preadditive if all its hom-sets are abelian groups and composition of morphisms is bilinear; in other words, C is over the of abelian groups.
In , an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms , Epimorphisms are categorical analogues of onto or surjective functions (and in the the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion is a ring epimorphism. The of an epimorphism is a monomorphism (i.e. an epimorphism in a C is a monomorphism in the Cop).
Let K be a global field of characteristic not 2. The embedding problem for maximal tori in a classical group G can be described in terms of algebras with involution. The aim of this paper is to give an explicit description of the obstruction group to the H ...
Neurophysiological brain responses to subcategories of action verbs were recorded using high resolution EEG. Starting 240 ms after word onset, topographies of event-related potentials distinguished between verbs referring to different action types. Current ...