Wingtip devices are intended to improve the efficiency of fixed-wing aircraft by reducing drag. Although there are several types of wing tip devices which function in different manners, their intended effect is always to reduce an aircraft's drag. Wingtip devices can also improve aircraft handling characteristics and enhance safety for following aircraft. Such devices increase the effective aspect ratio of a wing without greatly increasing the wingspan. Extending the span would lower lift-induced drag, but would increase parasitic drag and would require boosting the strength and weight of the wing. At some point, there is no net benefit from further increased span. There may also be operational considerations that limit the allowable wingspan (e.g., available width at airport gates).
Wingtip devices help prevent the flow around the wingtip of higher pressure air under the wing flowing to the lower pressure surface on top at the wingtip, which results in a vortex caused by the forward motion of the aircraft, the winglet also reduces the lift-induced drag caused by wingtip vortices, and improves lift-to-drag ratio. This increases fuel efficiency in powered aircraft and increases cross-country speed in gliders, in both cases increasing range. U.S. Air Force studies indicate that a given improvement in fuel efficiency correlates directly with the causal increase in the aircraft's lift-to-drag ratio.
The initial concept dates back to 1897, when English engineer Frederick W. Lanchester patented wing end-plates as a method for controlling wingtip vortices. In the United States, Scottish-born engineer William E. Somerville patented the first functional winglets in 1910. Somerville installed the devices on his early biplane and monoplane designs. Vincent Burnelli received US Patent no: 1,774,474 for his "Airfoil Control Means" on August 26, 1930.
Simple flat end-plates did not cause a reduction in drag, because the increase in profile drag was greater than the decrease in induced drag.
Following the end of World War II, Dr.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions. For an aerofoil wing or powered aircraft, the L/D is specified when in straight and level flight. For a glider it determines the glide ratio, of distance travelled against loss of height.
In aerodynamics, lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as . For a constant amount of lift, induced drag can be reduced by increasing airspeed.
The fuel economy in aircraft is the measure of the transport energy efficiency of aircraft. Efficiency is increased with better aerodynamics and by reducing weight, and with improved engine BSFC and propulsive efficiency or TSFC. Endurance and range can be maximized with the optimum airspeed, and economy is better at optimum altitudes, usually higher. An airline efficiency depends on its fleet fuel burn, seating density, air cargo and passenger load factor, while operational procedures like maintenance and routing can save fuel.
This directory contains open-source data obtained using a single-bladed H-type vertical-axis wind turbine prototype with individual blade pitching. This data results from the optimisation of the blade's pitching kinematics using a genetic algorithm at two ...
Zenodo2024
,
The success of drone missions is incumbent on an accurate determination of the drone pose and velocity, which are collectively estimated by fusing iner- tial measurement unit and global navigation satellite system (GNSS) mea- surements. However, during a G ...
2023
,
We investigate the effect of pressure gradient on the cumulative wake of multiple turbines in wind tunnel experiments spanning across a range of adverse pressure gradient (APG), zero pressure gradient (ZPG), and favorable pressure gradient (FPG). Compared ...