In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p < ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved.
There are also higher-dimensional generalizations, consisting of certain holomorphic functions on tube domains in the complex case, or certain spaces of distributions on Rn in the real case.
Hardy spaces have a number of applications in mathematical analysis itself, as well as in control theory (such as H∞ methods) and in scattering theory.
For spaces of holomorphic functions on the open unit disk, the Hardy space H2 consists of the functions f whose mean square value on the circle of radius r remains bounded as r → 1 from below.
More generally, the Hardy space Hp for 0 < p < ∞ is the class of holomorphic functions f on the open unit disk satisfying
This class Hp is a vector space. The number on the left side of the above inequality is the Hardy space p-norm for f, denoted by It is a norm when p ≥ 1, but not when 0 < p < 1.
The space H∞ is defined as the vector space of bounded holomorphic functions on the disk, with the norm
For 0 < p ≤ q ≤ ∞, the class Hq is a subset of Hp, and the Hp-norm is increasing with p (it is a consequence of Hölder's inequality that the Lp-norm is increasing for probability measures, i.e. measures with total mass 1).
The Hardy spaces defined in the preceding section can also be viewed as certain closed vector subspaces of the complex Lp spaces on the unit circle. This connection is provided by the following theorem : Given f ∈ Hp, with p ≥ 1, the radial limit
exists for almost every θ.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
En son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.
This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.
This course will review modern techniques for parameter and state estimation in a Bayesian framework for models involving differential equations, with particular attention to the high dimensional sett
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Originally, martingale referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails.
In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation.
Introduces Le spaces, measurable functions, Holder inequality, and LP space properties.
Explains barycenter, weak convergence, uniqueness of limits, distances, and Young measures in LP spaces.
Covers distributions, derivatives, convergence, and continuity criteria in function spaces.
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...
Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, although these models work well in practice, we still lack a proper characterization of why they do so. This poses serious questions about the robustness, trus ...