A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.
Monoclonal antibodies can have monovalent affinity, binding only to the same epitope (the part of an antigen that is recognized by the antibody). In contrast, polyclonal antibodies bind to multiple epitopes and are usually made by several different antibody-secreting plasma cell lineages. Bispecific monoclonal antibodies can also be engineered, by increasing the therapeutic targets of one monoclonal antibody to two epitopes.
It is possible to produce monoclonal antibodies that specifically bind to almost any suitable substance; they can then serve to detect or purify it. This capability has become an investigative tool in biochemistry, molecular biology, and medicine. Monoclonal antibodies are being used on a clinical level for both the diagnosis and therapy of several diseases. In 2020, the administration of monoclonal antibodies was authorized by several countries for treating moderate symptoms of COVID-19.
In the early 1900s, immunologist Paul Ehrlich proposed the idea of a Zauberkugel – "magic bullet", conceived of as a compound which selectively targeted a disease-causing organism, and could deliver a toxin for that organism. This underpinned the concept of monoclonal antibodies and monoclonal drug conjugates. Ehrlich and Élie Metchnikoff received the 1908 Nobel Prize for Physiology or Medicine for providing the theoretical basis for immunology.
By the 1970s, lymphocytes producing a single antibody were known, in the form of multiple myeloma – a cancer affecting B-cells. These abnormal antibodies or paraproteins were used to study the structure of antibodies, but it was not yet possible to produce identical antibodies specific to a given antigen. In 1973, Jerrold Schwaber described the production of monoclonal antibodies using human–mouse hybrid cells. This work remains widely cited among those using human-derived hybridomas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
This course discusses the molecular basis of diseases and how drugs work. Concepts and processes employed in today's drug discovery and development are covered. The first part of the course focuses on
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
White blood cells, also called leukocytes or leucocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells include three main subtypes; granulocytes, lymphocytes and monocytes. White cells is most preferred rather than the, white blood cells, because, they spend most of their time in the lymph or plasma. All white blood cells are produced and derived from multipotent cells in the bone marrow known as hematopoietic stem cells.
Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer. Cell-based immunotherapies are effective for some cancers.
Lupus, technically known as systemic lupus erythematosus (SLE), is an autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary among people and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, hair loss, mouth ulcers, swollen lymph nodes, feeling tired, and a red rash which is most commonly on the face. Often there are periods of illness, called flares, and periods of remission during which there are few symptoms.
Explores the development and challenges of antibody-based therapeutics, including chimeric and humanized antibodies, alternative scaffolds, and in vitro selection.
Explains ELISA principles, monoclonal antibodies, T cell receptors, clonal immune system, and flow cytometry.
,
The disclosure provides antibodies, or antigen-binding fragments thereof, and use thereof in prophylaxis, treatment and/or attenuation of a SARS-CoV-2 virus infection. ...
2024
We developed a rational approach to design peptide-based covalent inhibitors and coupled the inhibitors with antibodies for cell-specific delivery. We used this platform to generate antibody-peptide inhibitor conjugates (APICs) that target a family of prot ...
Nature Portfolio2024
Cysteine cathepsins proteases are enzymes that play essential physiological roles, but their activity is also associated to different aspects of cancer progression and to the development of other diseases. Therefore, cysteine cathepsins are relevant and pr ...