Wound bed preparation (WBP) is a systematic approach to wound management by identifying and removing barriers to healing. The concept was originally developed in plastic surgery. During the year 2000, the concept was applied to systematizing the treatment of chronic wounds. The 2000 proposals recommended that wound management address the identifiable impediments to healing in order to achieve more successful outcomes. Three publications appeared that year that focused on the concept of managing the healing processes of a wound exudate, bioburden and devitalized tissue. Initially, emphasis was placed on debridement, moisture balance and bacterial balance as the three guiding principles of good wound care, while at the same time recognizing that the provision of care includes a vast array of patient, clinical and environmental variables.
Since the year 2000, the wound bed preparation concept has continued to improve. For example, the TIME acronym (Tissue management, Inflammation and infection control, Moisture balance, Epithelial (edge) advancement) has supported the transition of basic science to the bedside in order to exploit appropriate wound healing interventions and has not deviated from the important tenets of debridement, moisture balance, and bacterial balance.
The TIME framework is not a continuum and as such is applicable to a wide range of wounds. The WBP model can be effectively applied only when a high level of precision is utilized in the assessment of the patient and their wound. The corollary of this is that intervention demands an equally high level of precision and this should be preceded by a comprehensive wound assessment.
Wound assessment is a vital first step in the precision management process.
The purpose of wound assessment is:
To identify:
the origin of the wound,
the effects of the wound on the individual,
the effects of the individual on the wound.
To determine:
if healing is taking place,
the most appropriate management of the wound.
To gather data:
to permit a comparison of wounds and their management.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
A chronic wound is a wound that does not heal in an orderly set of stages and in a predictable amount of time the way most wounds do; wounds that do not heal within three months are often considered chronic. Chronic wounds seem to be detained in one or more of the phases of wound healing. For example, chronic wounds often remain in the inflammatory stage for too long. To overcome that stage and jump-start the healing process, a number of factors need to be addressed such as bacterial burden, necrotic tissue, and moisture balance of the whole wound.
Peptide-based hydrogels are promising biocompatible materials for wound healing, drug delivery, and tissue engineering applications. The physical properties of these nanostructured materials depend strongly on the morphology of the gel network. However, th ...
In vitro skin models are validated methods for screening cosmetics and pharmaceuticals, but still have limitations. The bilayer poly(epsilon-caprolactone) scaffold/membrane model described here overcomes some of these deficits by integrating a solution ele ...
Weinheim2024
, , , , ,
Tissue wounds are a significant challenge for the healthcare system, affecting millions globally. Current methods like suturing and stapling have limitations as they inadequately cover the wound, fail to prevent fluid leakage, and increase the risk of infe ...