Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.
Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. For this reason, it is sometimes called partition-exchange sort. The sub-arrays are then sorted recursively. This can be done in-place, requiring small additional amounts of memory to perform the sorting.
Quicksort is a comparison sort, meaning that it can sort items of any type for which a "less-than" relation (formally, a total order) is defined. Most implementations of quicksort are not stable, meaning that the relative order of equal sort items is not preserved.
Mathematical analysis of quicksort shows that, on average, the algorithm takes comparisons to sort n items. In the worst case, it makes comparisons.
The quicksort algorithm was developed in 1959 by Tony Hoare while he was a visiting student at Moscow State University. At that time, Hoare was working on a machine translation project for the National Physical Laboratory. As a part of the translation process, he needed to sort the words in Russian sentences before looking them up in a Russian-English dictionary, which was in alphabetical order on magnetic tape. After recognizing that his first idea, insertion sort, would be slow, he came up with a new idea. He wrote the partition part in Mercury Autocode but had trouble dealing with the list of unsorted segments. On return to England, he was asked to write code for Shellsort. Hoare mentioned to his boss that he knew of a faster algorithm and his boss bet a sixpence that he did not. His boss ultimately accepted that he had lost the bet.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
In computer science, patience sorting is a sorting algorithm inspired by, and named after, the card game patience. A variant of the algorithm efficiently computes the length of a longest increasing subsequence in a given array. The algorithm's name derives from a simplified variant of the patience card game. The game begins with a shuffled deck of cards. The cards are dealt one by one into a sequence of piles on the table, according to the following rules. Initially, there are no piles.
External sorting is a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory, usually a disk drive. Thus, external sorting algorithms are external memory algorithms and thus applicable in the external memory model of computation. External sorting algorithms generally fall into two types, distribution sorting, which resembles quicksort, and external merge sort, which resembles merge sort.
In computing, a cache-oblivious algorithm (or cache-transcendent algorithm) is an algorithm designed to take advantage of a processor cache without having the size of the cache (or the length of the cache lines, etc.) as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes.
This paper considers the problem of second-degree price discrimination when the type distribution is unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a performance index, equivalent to relative regret, which quant ...
Fluorescence-activated droplet sorting (FADS) is a widely used microfluidic technique for high-throughput screening. However, it requires highly trained specialists to determine optimal sorting parameters, and this results in a large combinatorial space th ...
CELL PRESS2023
,
The design and implementation of efficient concurrent data structures has seen significant attention. However, most of this work has focused on concurrent data structures providing good worst-case guarantees, although, in real workloads, objects are often ...