Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper considers the problem of second-degree price discrimination when the type distribution is unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a performance index, equivalent to relative regret, which quantifies the worst-case attainment ratio between actual payoff and ex-post optimal payoff. We provide a simple representation of this performance index, as the lower envelope of two boundary performance ratios, relative to beliefs that lie at the boundary of the ambiguity set. A characterization of the solution to the underlying robust identification problem is given, which leads to a robust product portfolio, for which we also determine the worst-case performance over all possible consumer types. For a standard linear quadratic specification of the robust screening model, a worst-case performance index of 75% guarantees that the robust product portfolio exhibits a profitability that lies within a 25%-band of an ex-post optimal product portfolio, over all possible model parameters and beliefs. Finally, a numerical comparison benchmarks the robust solution against a number of alternative belief heuristics.
Daniel Kuhn, Viet Anh Nguyen, Peyman Mohajerin Esfahani
Alexandre Massoud Alahi, Virginie Janine Camille Lurkin