Allodynia is a condition in which pain is caused by a stimulus that does not normally elicit pain. For example, bad sunburn can cause temporary allodynia, and touching sunburned skin, or running cold or warm water over it, can be very painful. It is different from hyperalgesia, an exaggerated response from a normally painful stimulus. The term is from Ancient Greek άλλος állos "other" and οδύνη odúnē "pain".
There are different kinds or types of allodynia:
Mechanical allodynia (also known as tactile allodynia)
Static mechanical allodynia – pain in response when touched
Dynamic mechanical allodynia – pain in response to stroking lightly
Thermal (hot or cold) allodynia – pain from normally mild skin temperatures in the affected area
Movement allodynia – pain triggered by normal movement of joints or muscles
Allodynia is a clinical feature of many painful conditions, such as neuropathies, complex regional pain syndrome, postherpetic neuralgia, fibromyalgia, and migraine. Allodynia may also be caused by some populations of stem cells used to treat nerve damage including spinal cord injury.
The cell types involved in nociception and mechanical sensation are the cells responsible for allodynia. In healthy individuals, nociceptors sense information about cell stress or damage and temperature at the skin and transmit it to the spinal cord. The cell bodies of these neurons lie in dorsal root ganglia, important structures located on both sides of the spinal cord. The axons then pass through the dorsal horn to make connections with secondary neurons. The secondary neurons cross over to the other (contralateral) side of the spinal cord and reach nuclei of the thalamus. From there, the information is carried through one or more neurons to the somatosensory cortex of the brain. Mechanoreceptors follow the same general pathway. However, they do not cross over at the level of the spinal cord, but at the lower medulla instead. In addition, they are grouped in tracts that are spatially distinct from the nociceptive tracts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hyperalgesia (ˌhaɪpərælˈdʒiːziə or -siə; 'hyper' from Greek ὑπέρ (huper, “over”), '-algesia' from Greek algos, ἄλγος (pain)) is an abnormally increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves and can cause hypersensitivity to stimulus. Prostaglandins E and F are largely responsible for sensitizing the nociceptors. Temporary increased sensitivity to pain also occurs as part of sickness behavior, the evolved response to infection.
An opiate, in classical pharmacology, is a substance derived from opium. In more modern usage, the term opioid is used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain (including antagonists). Opiates are alkaloid compounds naturally found in the opium poppy plant Papaver somniferum. The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions with evidence of opiate trade and use for pain relief as early as the eighth century AD.
Neuropathic pain is pain caused by damage or disease affecting the somatosensory system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuous and/or episodic (paroxysmal) components. The latter resemble stabbings or electric shocks. Common qualities include burning or coldness, "pins and needles" sensations, numbness and itching. Up to 7-8% of the European population is affected, and in 5% of persons it may be severe.
Animals are capable of evaluating sensory cues for possible threats and adapting their behaviours accordingly. Fear learning is an evolutionarily conserved behaviour crucial for animal survival, during which sensory percepts with a negative reinforcing qua ...
At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influenc ...
Background Mechanical hyperalgesia and allodynia incidence varies considerably amongst neuropathic pain patients. This study explored whether sensory or psychological factors associate with mechanical hyperalgesia and brush allodynia in a human experimenta ...