In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory.
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.e., the subsets are nonempty mutually disjoint sets).
Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold:
The family P does not contain the empty set (that is ).
The union of the sets in P is equal to X (that is ). The sets in P are said to exhaust or cover X. See also collectively exhaustive events and cover (topology).
The intersection of any two distinct sets in P is empty (that is ). The elements of P are said to be pairwise disjoint or mutually exclusive. See also mutual exclusivity.
The sets in are called the blocks, parts, or cells, of the partition. If then we represent the cell containing by . That is to say, is notation for the cell in which contains .
Every partition may be identified with an equivalence relation on , namely the relation such that for any we have if and only if (equivalently, if and only if ). The notation evokes the idea that the equivalence relation may be constructed from the partition. Conversely every equivalence relation may be identified with a partition. This is why it is sometimes said informally that "an equivalence relation is the same as a partition". If P is the partition identified with a given equivalence relation , then some authors write . This notation is suggestive of the idea that the partition is the set X divided in to cells. The notation also evokes the idea that, from the equivalence relation one may construct the partition.
The rank of is , if is finite.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
In mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set is a singleton whose single element is . Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and {1} are not the same thing, and the empty set is distinct from the set containing only the empty set.
In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another.
The objective of this article is to propose a new composite index (CI) that helps to determine the most effective location of servers in an Emergency Care System (ECS), using Benefit of the Doubt (BoD)/Data Envelopment Analysis (DEA) and the Hypercube queu ...
Covers free meshing algorithms, partitioning, and incompatible meshes in 3D simulations, emphasizing the importance of mesh quality and element compatibility.
In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...
2022
, , , , ,
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy, and quantum control of mechanical oscillators via optomechanics and electromechanics. The mechanical quali ...