Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Singleton (mathématiques)En mathématiques, un singleton est un ensemble qui comprend exactement un élément. Le singleton dont l'élément est a se note . Soit S une classe définie par une fonction indicatrice alors S est un singleton si et seulement s’il existe y ∈ X tel que pour tout x ∈ X, La définition suivante vient de Alfred North Whitehead et Russell Le symbole ι'x désigne le singleton {x} et désigne la classe des objets identiques à x, soit l'ensemble {y / y = x}.
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
Union-findthumb|Partition avec 8 classes (qui sont des singletons) obtenue avec MakeSet(1), ..., MakeSet(8).|255x255px thumb|Partition avec 3 classes disjointes obtenue après Union(1, 2), Union(3, 4), Union(2, 5), Union(1, 6) et Union(2, 8).|255x255px En informatique, union-find est une structure de données qui représente une partition d'un ensemble fini (ou de manière équivalente une relation d'équivalence).
Geometric latticeIn the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite, or finite and infinite, matroids, and every geometric or matroid lattice comes from a matroid in this way. A lattice is a poset in which any two elements and have both a least upper bound, called the join or supremum, denoted by , and a greatest lower bound, called the meet or infimum, denoted by .
SetoidIn mathematics, a setoid (X, ~) is a set (or type) X equipped with an equivalence relation ~. A setoid may also be called E-set, Bishop set, or extensional set. Setoids are studied especially in proof theory and in type-theoretic foundations of mathematics. Often in mathematics, when one defines an equivalence relation on a set, one immediately forms the quotient set (turning equivalence into equality).
Nombre de BellEn mathématiques, le n-ième nombre de Bell (du nom de Eric Temple Bell) est le nombre de partitions d'un ensemble à n éléments distincts ou, ce qui revient au même, le nombre de relations d'équivalence sur un tel ensemble. Ces nombres forment la suite d'entiers de l'OEIS, dont on peut calculer à la main les premiers termes :Le premier vaut 1 car il existe exactement une partition de l'ensemble vide : la partition vide, formée d'aucune partie. En effet, ses éléments (puisqu'il n'y en a aucun) sont bien non vides et disjoints deux à deux, et de réunion vide.
Nombre de CatalanEn mathématiques, et plus particulièrement en combinatoire, les nombres de Catalan forment une suite d'entiers naturels utilisée dans divers problèmes de dénombrement, impliquant souvent des objets définis de façon récursive. Ils sont nommés ainsi en l'honneur du mathématicien belge Eugène Charles Catalan (1814-1894) qui les a étudiés en 1838, mais étaient déjà connus d'Euler. Le nombre de Catalan d'indice n est défini par : Pour , on peut écrire : (voir Coefficient binomial central).