Summary
A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors are usually housed in plastic enclosures, typically shaped like a disk about in diameter and thick, but shape and size vary. Smoke can be detected either optically (photoelectric) or by physical process (ionization). Detectors may use one or both sensing methods. Sensitive alarms can be used to detect and deter smoking in banned areas. Smoke detectors in large commercial and industrial buildings are usually connected to a central fire alarm system. Household smoke detectors, also known as smoke alarms, generally issue an audible or visual alarm from the detector itself or several detectors if there are multiple devices interlinked. Household smoke detectors range from individual battery-powered units to several interlinked units with battery backup. With interlinked units, if any unit detects smoke, alarms will trigger at all of the units. This happens even if household power has gone out. Commercial smoke detectors issue a signal to a fire alarm control panel as part of a fire alarm system. Usually, an individual commercial smoke detector unit does not issue an alarm; some, however, do have built-in sounders. The risk of dying in a residential fire is cut in half in houses with working smoke detectors. The US National Fire Protection Association reports 0.53 deaths per 100 fires in homes with working smoke detectors compared to 1.18 deaths without (2009–2013). However, some homes do not have any smoke alarms, and some homes do not have any working batteries in their smoke alarms. The first automatic electric fire alarm was patented in 1890 by Francis Robbins Upton, an associate of Thomas Edison. In 1902, George Andrew Darby patented the first European electrical heat detector in Birmingham, England. In the late 1930s, Swiss physicist Walter Jaeger attempted to invent a sensor for poison gas. He expected the gas entering the sensor to bind to ionized air molecules and thereby alter an electric current in a circuit of the instrument.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well