Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy (described here) is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.
In terms of measure theory, the differential entropy of a probability measure is the negative relative entropy from that measure to the Lebesgue measure, where the latter is treated as if it were a probability measure, despite being unnormalized.
Let be a random variable with a probability density function whose support is a set . The differential entropy or is defined as
For probability distributions which do not have an explicit density function expression, but have an explicit quantile function expression, , then can be defined in terms of the derivative of i.e. the quantile density function as
As with its discrete analog, the units of differential entropy depend on the base of the logarithm, which is usually 2 (i.e., the units are bits). See logarithmic units for logarithms taken in different bases. Related concepts such as joint, conditional differential entropy, and relative entropy are defined in a similar fashion. Unlike the discrete analog, the differential entropy has an offset that depends on the units used to measure . For example, the differential entropy of a quantity measured in millimeters will be more than the same quantity measured in meters; a dimensionless quantity will have differential entropy of more than the same quantity divided by 1000.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class (usually defined in terms of specified properties or measures), then the distribution with the largest entropy should be chosen as the least-informative default.
The shannon (symbol: Sh) is a unit of information named after Claude Shannon, the founder of information theory. IEC 80000-13 defines the shannon as the information content associated with an event when the probability of the event occurring is 1/2. It is understood as such within the realm of information theory, and is conceptually distinct from the bit, a term used in data processing and storage to denote a single instance of a binary signal.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as . The conditional entropy of given is defined as where and denote the support sets of and . Note: Here, the convention is that the expression should be treated as being equal to zero. This is because .
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
Barocaloric (BC) materials provide cheaper and more energy efficient alternatives to traditional refrigerants. Some liquid alkanes were recently shown to exhibit a colossal BC effect, matching the entropy changes in commercial vapour-liquid refrigerants. D ...
The conditional mean is a fundamental and important quantity whose applications include the theories of estimation and rate-distortion. It is also notoriously difficult to work with. This paper establishes novel bounds on the differential entropy of the co ...
Hand gestures are one of the most natural and expressive way for humans to convey information, and thus hand gesture recognition has become a research hotspot in the human-machine interface (HMI) field. In particular, biological signals such as surface ele ...