In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit. Let X be a non-empty set and G a group. Then X is called a G-space if it is equipped with an action of G on X. Note that automatically G acts by automorphisms (bijections) on the set. If X in addition belongs to some , then the elements of G are assumed to act as automorphisms in the same category. That is, the maps on X coming from elements of G preserve the structure associated with the category (for example, if X is an object in Diff then the action is required to be by diffeomorphisms). A homogeneous space is a G-space on which G acts transitively. Succinctly, if X is an object of the category C, then the structure of a G-space is a homomorphism: into the group of automorphisms of the object X in the category C. The pair (X, ρ) defines a homogeneous space provided ρ(G) is a transitive group of symmetries of the underlying set of X. For example, if X is a topological space, then group elements are assumed to act as homeomorphisms on X.
Marc-Edouard Baptiste Grégoire Schultheiss