Summary
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit. Let X be a non-empty set and G a group. Then X is called a G-space if it is equipped with an action of G on X. Note that automatically G acts by automorphisms (bijections) on the set. If X in addition belongs to some , then the elements of G are assumed to act as automorphisms in the same category. That is, the maps on X coming from elements of G preserve the structure associated with the category (for example, if X is an object in Diff then the action is required to be by diffeomorphisms). A homogeneous space is a G-space on which G acts transitively. Succinctly, if X is an object of the category C, then the structure of a G-space is a homomorphism: into the group of automorphisms of the object X in the category C. The pair (X, ρ) defines a homogeneous space provided ρ(G) is a transitive group of symmetries of the underlying set of X. For example, if X is a topological space, then group elements are assumed to act as homeomorphisms on X.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.