Summary
Estimation (or estimating) is the process of finding an estimate or approximation, which is a value that is usable for some purpose even if input data may be incomplete, uncertain, or unstable. The value is nonetheless usable because it is derived from the best information available. Typically, estimation involves "using the value of a statistic derived from a sample to estimate the value of a corresponding population parameter". The sample provides information that can be projected, through various formal or informal processes, to determine a range most likely to describe the missing information. An estimate that turns out to be incorrect will be an overestimate if the estimate exceeds the actual result and an underestimate if the estimate falls short of the actual result. Estimation is often done by sampling, which is counting a small number of examples something, and projecting that number onto a larger population. An example of estimation would be determining how many candies of a given size are in a glass jar. Because the distribution of candies inside the jar may vary, the observer can count the number of candies visible through the glass, consider the size of the jar, and presume that a similar distribution can be found in the parts that can not be seen, thereby making an estimate of the total number of candies that could be in the jar if that presumption were true. Estimates can similarly be generated by projecting results from polls or surveys onto the entire population. In making an estimate, the goal is often most useful to generate a range of possible outcomes that is precise enough to be useful but not so precise that it is likely to be inaccurate. For example, in trying to guess the number of candies in the jar, if fifty were visible, and the total volume of the jar seemed to be about twenty times as large as the volume containing the visible candies, then one might simply project that there were a thousand candies in the jar. Such a projection, intended to pick the single value that is believed to be closest to the actual value, is called a point estimate.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (63)
Estimating R: Marginal and Conditional Distributions
Covers the estimation of R using bivariate normal distributions and explores the marginal and conditional distributions of X₁ and X₂.
Estimating R: Example 100
Explores correlation limitations, probability, random variables, and statistical inference using a ball-drawing example.
Conditional Expectation: Properties and Examples
Explores conditional expectation properties, variance, and examples in practical applications.
Show more