In the mathematical field of topology, a section (or cross section) of a fiber bundle is a continuous right inverse of the projection function . In other words, if is a fiber bundle over a base space, : then a section of that fiber bundle is a continuous map, such that for all . A section is an abstract characterization of what it means to be a graph. The graph of a function can be identified with a function taking its values in the Cartesian product , of and : Let be the projection onto the first factor: . Then a graph is any function for which . The language of fibre bundles allows this notion of a section to be generalized to the case when is not necessarily a Cartesian product. If is a fibre bundle, then a section is a choice of point in each of the fibres. The condition simply means that the section at a point must lie over . (See image.) For example, when is a vector bundle a section of is an element of the vector space lying over each point . In particular, a vector field on a smooth manifold is a choice of tangent vector at each point of : this is a section of the tangent bundle of . Likewise, a 1-form on is a section of the cotangent bundle. Sections, particularly of principal bundles and vector bundles, are also very important tools in differential geometry. In this setting, the base space is a smooth manifold , and is assumed to be a smooth fiber bundle over (i.e., is a smooth manifold and is a smooth map). In this case, one considers the space of smooth sections of over an open set , denoted . It is also useful in geometric analysis to consider spaces of sections with intermediate regularity (e.g., sections, or sections with regularity in the sense of Hölder conditions or Sobolev spaces). Fiber bundles do not in general have such global sections (consider, for example, the fiber bundle over with fiber obtained by taking the Möbius bundle and removing the zero section), so it is also useful to define sections only locally. A local section of a fiber bundle is a continuous map where is an open set in and for all in .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MATH-322: Differential geometry II - smooth manifolds
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
MATH-473: Complex manifolds
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Show more
Related lectures (27)
Nonlinear Analysis of Structures
Covers the nonlinear analysis of structures using OpenSees software.
Differential Forms on Manifolds
Introduces differential forms on manifolds, covering tangent bundles and intersection pairings.
Cross Product in Cohomology
Explores the cross product in cohomology, covering its properties and applications in homotopy.
Show more
Related concepts (17)
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Principal bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with An action of on , analogous to for a product space. A projection onto . For a product space, this is just the projection onto the first factor, . Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of .
Characteristic class
In mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.