**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Cross Product in Cohomology

Description

This lecture covers the cross product in cohomology, discussing the isomorphism in all degrees, the universal coefficients theorem, and the compatibility of cross products. It explores the associative and commutative properties of the cross product, its naturalness, and its applications in homotopy. The lecture also delves into the behavior of generators and the graded sense of the cross product, providing examples and proofs to illustrate the concepts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

Instructor

Related concepts (373)

Sheaf (mathematics)

In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

Motivic cohomology

Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology. Let X be a scheme of finite type over a field k. A key goal of algebraic geometry is to compute the Chow groups of X, because they give strong information about all subvarieties of X.

Topology

In mathematics, topology (from the Greek words τόπος, and λόγος) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity.

Free module

In mathematics, a free module is a module that has a basis, that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S. A free abelian group is precisely a free module over the ring Z of integers.

Hom functor

In mathematics, specifically in , hom-sets (i.e. sets of morphisms between ) give rise to important functors to the . These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Let C be a (i.e. a for which hom-classes are actually sets and not proper classes). For all objects A and B in C we define two functors to the as follows: {| class=wikitable |- ! Hom(A, –) : C → Set ! Hom(–, B) : C → Set |- | This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).

Related lectures (1,000)

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Graded Ring Structure on CohomologyMATH-506: Topology IV.b - cohomology rings

Explores the associative and commutative properties of the cup product in cohomology, with a focus on graded structures.

Acyclic Models: Cup Product and CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.

The Topological Künneth TheoremMATH-506: Topology IV.b - cohomology rings

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

Algebraic Kunneth TheoremMATH-506: Topology IV.b - cohomology rings

Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.