Summary
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with An action of on , analogous to for a product space. A projection onto . For a product space, this is just the projection onto the first factor, . Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of . Likewise, there is not generally a projection onto generalizing the projection onto the second factor, that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal bundle is the frame bundle of a vector bundle , which consists of all ordered bases of the vector space attached to each point. The group in this case, is the general linear group, which acts on the right in the usual way: by changes of basis. Since there is no natural way to choose an ordered basis of a vector space, a frame bundle lacks a canonical choice of identity cross-section. Principal bundles have important applications in topology and differential geometry and mathematical gauge theory. They have also found application in physics where they form part of the foundational framework of physical gauge theories. A principal -bundle, where denotes any topological group, is a fiber bundle together with a continuous right action such that preserves the fibers of (i.e. if then for all ) and acts freely and transitively (meaning each fiber is a G-torsor) on them in such a way that for each and , the map sending to is a homeomorphism. In particular each fiber of the bundle is homeomorphic to the group itself. Frequently, one requires the base space to be Hausdorff and possibly paracompact.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
MATH-473: Complex manifolds
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
MSE-464: Assembly techniques
Introduction to the assembly of materials by homogeneous or heterogeneous joints (welding, bonding, mechanical assembly). Mechanical and environmental resistance of joints.
MATH-322: Differential geometry II - smooth manifolds
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
Show more
Related lectures (36)
Properties of Coatings
Covers the properties of coatings, including trivializing opens and automorphisms.
Differential Forms on Manifolds
Introduces differential forms on manifolds, covering tangent bundles and intersection pairings.
Show more
Related publications (69)

FIBERED TORIC VARIETIES

Leonid Monin

A toric variety is called fibered if it can be represented as a total space of fibre bundle over toric base and with toric fiber. Fibered toric varieties form a special case of toric variety bundles. In this note we first give an introduction to the class ...
Moscow2023

Axonal and Dendritic Morphology of Excitatory Neurons in Layer 2/3 Mouse Barrel Cortex Imaged Through Whole-Brain Two-Photon Tomography and Registered to a Digital Brain Atlas

Carl Petersen, Sylvain Crochet, Yanqi Liu, Georgios Foustoukos

Communication between cortical areas contributes importantly to sensory perception and cognition. On the millisecond time scale, information is signaled from one brain area to another by action potentials propagating across long-range axonal arborizations. ...
FRONTIERS MEDIA SA2022

Ordinary varieties with trivial canonical bundle are not uniruled

Zsolt Patakfalvi, Maciej Emilian Zdanowicz

We prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic p>0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with La ...
2021
Show more
Related concepts (35)
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Principal homogeneous space
In mathematics, a principal homogeneous space, or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right) action of G on X).
Frame bundle
In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
Show more