Résumé
En topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x. Alors on appelle graphe toute fonction f pour laquelle π(f(x))=x. La notion d'espace fibré permet d'élargir cette notion de graphe au-delà du cas où E est un produit cartésien. Si π : E → B est un espace fibré, alors une section est le choix d'un point f(x) dans chacune des fibres. La condition π(f(x)) = x signifie simplement que la section au point x doit être située dans la fibre liée à x. (Voir image.) Par exemple, si E est un fibré vectoriel, une section de E est un élément de l'espace vectoriel Ex lié à chaque point x ∈ B. En particulier, un champ de vecteurs sur une variété différentielle régulière M est le choix en chaque point de M, d'un vecteur tangent : il s'agit alors d'une "section" du fibré tangent de M. De même, une 1-forme sur M est une section du fibré cotangent. En général, les espaces fibrés n'ont pas de telles sections (dites globales), il est donc aussi utile de définir des sections dites locales : une section locale d'un espace fibré est une application continue f : U → E où U est un ouvert de B et π(f(x))=x pour tout x dans U. Si (U, φ) est une trivialisation locale de E, où φ est un homéomorphisme de π-1(U) dans U × F (où F est le fibré), alors il existe toujours des sections locales sur U en correspondance bijective avec les applications continues de U dans F. Les sections locales forment un faisceau sur B appelé le faisceau des sections de E. L'espace des sections continues d'un espace fibré E sur U est parfois noté C(U,E), alors que l'espace des sections globales de E est souvent noté Γ(E) ou Γ(B,E).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
MATH-322: Differential geometry II - smooth manifolds
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
MATH-473: Complex manifolds
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Afficher plus