Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x. Alors on appelle graphe toute fonction f pour laquelle π(f(x))=x. La notion d'espace fibré permet d'élargir cette notion de graphe au-delà du cas où E est un produit cartésien. Si π : E → B est un espace fibré, alors une section est le choix d'un point f(x) dans chacune des fibres. La condition π(f(x)) = x signifie simplement que la section au point x doit être située dans la fibre liée à x. (Voir image.) Par exemple, si E est un fibré vectoriel, une section de E est un élément de l'espace vectoriel Ex lié à chaque point x ∈ B. En particulier, un champ de vecteurs sur une variété différentielle régulière M est le choix en chaque point de M, d'un vecteur tangent : il s'agit alors d'une "section" du fibré tangent de M. De même, une 1-forme sur M est une section du fibré cotangent. En général, les espaces fibrés n'ont pas de telles sections (dites globales), il est donc aussi utile de définir des sections dites locales : une section locale d'un espace fibré est une application continue f : U → E où U est un ouvert de B et π(f(x))=x pour tout x dans U. Si (U, φ) est une trivialisation locale de E, où φ est un homéomorphisme de π-1(U) dans U × F (où F est le fibré), alors il existe toujours des sections locales sur U en correspondance bijective avec les applications continues de U dans F. Les sections locales forment un faisceau sur B appelé le faisceau des sections de E. L'espace des sections continues d'un espace fibré E sur U est parfois noté C(U,E), alors que l'espace des sections globales de E est souvent noté Γ(E) ou Γ(B,E).
Carl Petersen, Sylvain Crochet, Yanqi Liu, Georgios Foustoukos