In probability theory, an empirical process is a stochastic process that describes the proportion of objects in a system in a given state.
For a process in a discrete state space a population continuous time Markov chain or Markov population model is a process which counts the number of objects in a given state (without rescaling).
In mean field theory, limit theorems (as the number of objects becomes large) are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.
For X1, X2, ... Xn independent and identically-distributed random variables in R with common cumulative distribution function F(x), the empirical distribution function is defined by
where IC is the indicator function of the set C.
For every (fixed) x, Fn(x) is a sequence of random variables which converge to F(x) almost surely by the strong law of large numbers. That is, Fn converges to F pointwise. Glivenko and Cantelli strengthened this result by proving uniform convergence of Fn to F by the Glivenko–Cantelli theorem.
A centered and scaled version of the empirical measure is the signed measure
It induces a map on measurable functions f given by
By the central limit theorem, converges in distribution to a normal random variable N(0, P(A)(1 − P(A))) for fixed measurable set A. Similarly, for a fixed function f, converges in distribution to a normal random variable , provided that and exist.
Definition
is called an empirical process indexed by , a collection of measurable subsets of S.
is called an empirical process indexed by , a collection of measurable functions from S to .
A significant result in the area of empirical processes is Donsker's theorem. It has led to a study of Donsker classes: sets of functions with the useful property that empirical processes indexed by these classes converge weakly to a certain Gaussian process. While it can be shown that Donsker classes are Glivenko–Cantelli classes, the converse is not true in general.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course to the concentration of measure phenomenon - random functions that depend on many random variables tend to be often close to constant functions.
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.
In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as .
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
The concept of novelty is central to questions of creativity, innovation, and discovery. Despite the prominence in scientific inquiry and everyday discourse, there is a chronic ambiguity over its meaning and a surprising variety of empirical measures, whic ...
This paper analyses the effects of quantitative easing (QE) on households' income and consumption inequality in the Euro Area. Using a SVAR with high frequency identification, I show that an identified QE shock is redistributive and expansionary. To ration ...