Summary
In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily equivalent to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix. The Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A. Since U is similar to A, it has the same spectrum, and since it is triangular, its eigenvalues are the diagonal entries of U. The Schur decomposition implies that there exists a nested sequence of A-invariant subspaces {0} = V0 ⊂ V1 ⊂ ⋯ ⊂ Vn = Cn, and that there exists an ordered orthonormal basis (for the standard Hermitian form of Cn) such that the first i basis vectors span Vi for each i occurring in the nested sequence. Phrased somewhat differently, the first part says that a linear operator J on a complex finite-dimensional vector space stabilizes a complete flag (V1, ..., Vn). A constructive proof for the Schur decomposition is as follows: every operator A on a complex finite-dimensional vector space has an eigenvalue λ, corresponding to some eigenspace Vλ. Let Vλ⊥ be its orthogonal complement. It is clear that, with respect to this orthogonal decomposition, A has matrix representation (one can pick here any orthonormal bases Z1 and Z2 spanning Vλ and Vλ⊥ respectively) where Iλ is the identity operator on Vλ. The above matrix would be upper-triangular except for the A22 block. But exactly the same procedure can be applied to the sub-matrix A22, viewed as an operator on Vλ⊥, and its submatrices. Continue this way until the resulting matrix is upper triangular. Since each conjugation increases the dimension of the upper-triangular block by at least one, this process takes at most n steps.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.