Summary
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation M9, M10, M20 and M21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid M13 acting on 13 points. M21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). introduced the group M12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) the group M24, giving its order. In he gave further details, including explicit generating sets for his groups, but it was not easy to see from his arguments that the groups generated are not just alternating groups, and for several years the existence of his groups was controversial. even published a paper mistakenly claiming to prove that M24 does not exist, though shortly afterwards in he pointed out that his proof was wrong, and gave a proof that the Mathieu groups are simple. finally removed the doubts about the existence of these groups, by constructing them as successive transitive extensions of permutation groups, as well as automorphism groups of Steiner systems. After the Mathieu groups no new sporadic groups were found until 1965, when the group J1 was discovered. Mathieu was interested in finding multiply transitive permutation groups, which will now be defined. For a natural number k, a permutation group G acting on n points is k-transitive if, given two sets of points a1, ... ak and b1, ... bk with the property that all the ai are distinct and all the bi are distinct, there is a group element g in G which maps ai to bi for each i between 1 and k.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (3)
MATH-225: Topology II - fundamental groups
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
Related lectures (32)
Monster Group: Representation
Explores the Monster group, a sporadic simple group with a unique representation theory.
Stabilizer Formalism
Covers the stabilizer formalism, code words, weights, syndromes, and error correction using stabilizer codes.
Group Actions on Lattices
Explores group actions on lattices, emphasizing GL₂(Q) and GL₂(Ag) compatibility and alternative formulations.
Show more
Related publications (12)

Symmetry in design and decoding of polar-like codes

Kirill Ivanov

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022
Show more
Related concepts (17)
Conway group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order 8,315,553,613,086,720,000 but it is not a simple group. The simple group Co1 of order 4,157,776,806,543,360,000 = 221395472111323 is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1.
Projective linear group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Outer automorphism group
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Show more