Résumé
En mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés M. Les groupes de Mathieu ont été les premiers groupes sporadiques découverts. Les groupes M et M sont 5-transitifs, les groupes M et M sont 4-transitifs et M est 3-transitif. Cette transitivité est même stricte pour M et M. Il résulte de la classification des groupes simples finis que les seuls groupes de permutations 4-transitifs sont les groupes symétrique et alterné (de degré ≥ 4 et ≥ 6 respectivement) et les groupes de Mathieu M, M, M et M. Il existe, à une équivalence près, un unique système de Steiner S(5,8,24). Le groupe M est le groupe d'automorphismes de ce système de Steiner, c’est-à-dire l'ensemble des permutations qui applique chaque bloc vers un certain autre bloc. Les sous-groupes M et M sont définis comme étant les stabilisateurs d'un seul point et de deux points respectivement. De manière similaire, il existe, à une équivalence près, un unique système de Steiner S(5,6,12) et le groupe M est son groupe d'automorphismes. Le sous-groupe M est le stabilisateur d'un point. Une construction alternative de S(5,6,12) est le « Chaton » de Curtis. Le groupe M peut aussi être vu comme le groupe d'automorphismes du code de Golay binaire W, i.e., le groupe des permutations de coordonnées appliquant W vers lui-même. Nous pouvons aussi le regarder comme l'intersection de S et Stab(W) dans Aut(V). Les mots code correspondent de manière naturelle aux sous-ensembles d'un ensemble de 24 objets. Ces sous-ensembles correspondant aux mots code à 8 ou 12 coordonnées égales à 1 sont appelés octades ou dodécades respectivement. Les octades sont des blocs d'un système de Steiner S(5,8,24). Les sous-groupes simples M, M, M et M peuvent être définis comme des sous-groupes de M, stabilisateurs respectivement de coordonnée unique, une paire ordonnée de coordonnées, une paire de dodécades complémentaires et une paire de dodécade avec une coordonnée seule.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-225: Topologie II - groupes fondamentaux
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
Séances de cours associées (32)
Monster Group : Représentation
Explore le groupe Monster, un groupe simple sporadique avec une théorie de représentation unique.
Formalisme stabilisant
Couvre le formalisme stabilisant, les mots de code, les poids, les syndromes et la correction d'erreurs à l'aide de codes stabilisants.
Actions de groupe sur les réseaux
Explore les actions de groupe sur les réseaux, en mettant l'accent sur la compatibilité GL2(Q) et GL2(Ag) et les formulations alternatives.
Afficher plus
Publications associées (12)
Concepts associés (17)
Groupes de Conway
En mathématiques, les groupes de Conway Co, Co et Co sont trois groupes sporadiques découverts par John Horton Conway en 1968. Tous sont intimement liés au réseau de Leech Λ. Le plus grand, Co, d'ordre , est obtenu en quotientant le groupe des automorphismes de Λ par son centre, qui est constitué des matrices scalaires ±1. Les groupes Co (d'ordre ) et Co (d'ordre ) sont constitués des automorphismes de Λ fixant un vecteur de réseau de type 2 et un vecteur de type 3 respectivement.
Projective linear group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Outer automorphism group
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Afficher plus