In mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity. In inversive geometry a straight line is considered to be a generalized circle containing the point at infinity; inversion of the plane with respect to a line is a Euclidean reflection. More generally, a Möbius plane is an incidence structure with the same incidence relationships as the classical Möbius plane. It is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. Affine planes are systems of points and lines that satisfy, amongst others, the property that two points determine exactly one line. This concept can be generalized to systems of points and circles, with each circle being determined by three non-collinear points. However, three collinear points determine a line, not a circle. This drawback can be removed by adding a point at infinity to every line. If we call both circles and such completed lines cycles, we get an incidence structure in which every three points determine exactly one cycle. In an affine plane the parallel relation between lines is essential. In the geometry of cycles, this relation is generalized to the touching relation. Two cycles touch each other if they have just one point in common. This is true for two tangent circles or a line that is tangent to a circle. Two completed lines touch if they have only the point at infinity in common, so they are parallel. The touching relation has the property for any cycle , point on and any point not on there is exactly one cycle containing points and touching (at point ).
Katrin Beyer, Francesco Vanin, Andrea Penna