Concept

Symmetry in quantum mechanics

Summary
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. This article outlines the connection between the classical form of continuous symmetries as well as their quantum operators, and relates them to the Lie groups, and relativistic transformations in the Lorentz group and Poincaré group. The notational conventions used in this article are as follows. Boldface indicates vectors, four vectors, matrices, and vectorial operators, while quantum states use bra–ket notation. Wide hats are for operators, narrow hats are for unit vectors (including their components in tensor index notation). The summation convention on the repeated tensor indices is used, unless stated otherwise. The Minkowski metric signature is (+−−−). Generally, the correspondence between continuous symmetries and conservation laws is given by Noether's theorem. The form of the fundamental quantum operators, for example energy as a partial time derivative and momentum as a spatial gradient, becomes clear when one considers the initial state, then changes one parameter of it slightly. This can be done for displacements (lengths), durations (time), and angles (rotations). Additionally, the invariance of certain quantities can be seen by making such changes in lengths and angles, illustrating conservation of these quantities.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (19)
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
Show more