Concept

Symmetry in quantum mechanics

Résumé
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. This article outlines the connection between the classical form of continuous symmetries as well as their quantum operators, and relates them to the Lie groups, and relativistic transformations in the Lorentz group and Poincaré group. The notational conventions used in this article are as follows. Boldface indicates vectors, four vectors, matrices, and vectorial operators, while quantum states use bra–ket notation. Wide hats are for operators, narrow hats are for unit vectors (including their components in tensor index notation). The summation convention on the repeated tensor indices is used, unless stated otherwise. The Minkowski metric signature is (+−−−). Generally, the correspondence between continuous symmetries and conservation laws is given by Noether's theorem. The form of the fundamental quantum operators, for example energy as a partial time derivative and momentum as a spatial gradient, becomes clear when one considers the initial state, then changes one parameter of it slightly. This can be done for displacements (lengths), durations (time), and angles (rotations). Additionally, the invariance of certain quantities can be seen by making such changes in lengths and angles, illustrating conservation of these quantities.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (19)
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
Afficher plus
Séances de cours associées (38)
Transformations formelles : Partie 1
Couvre le sujet des transformations conformes, y compris les traductions, les dilatations, les rotations et l'algèbre conforme.
Grande expansion N: modèles vectoriels
Explore l'expansion de Large N dans les modèles vectoriels, en se concentrant sur les modèles matriciels, les théories de jauge et le couplage Hooft.
Théorie quantique des champs : Identités de salle
Explore les identités de Ward dans la théorie quantique des champs, en mettant l'accent sur les cas classiques et quantiques, les générateurs de symétrie et la théorie des perturbations.
Afficher plus
Publications associées (109)

Anomalous‐Chern Steering of Topological Nonreciprocal Guided Waves

Romain Christophe Rémy Fleury, Haoye Qin, Zhechen Zhang, Qiaolu Chen

Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast ...
2024

'Fraternal-twin' ferroelectricity: competing polar states in hydrogen-doped samarium nickelate from first principles

Michele Kotiuga

In ferroelectric switching, an applied electric field switches the system between two polar symmetry-equivalent states. In this work, we use first-principles calculations to explore the polar states of hydrogen-doped samarium nickelate (SNO) at a concentra ...
Iop Publishing Ltd2024

The role of the pion in the lineshape of the X(3872)

Riccardo Rattazzi, Angelo Esposito, Alfredo Glioti

We determine the contribution of long-range pion interactions to the X(3872) dynamics, assuming it is a loosely bound D-0(D) over bar*(0) molecule. Our result is based on the distorted wave Born approximation in non-relativistic quantum mechanics. Despite ...
Amsterdam2023
Afficher plus
Concepts associés (16)
Continuous symmetry
In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Gluon field
In theoretical particle physics, the gluon field is a four-vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in quantum electrodynamics - the gluon field constructs the gluon field strength tensor. Throughout this article, Latin indices take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices take values 0 for timelike components and 1, 2, 3 for spacelike components of four-dimensional vectors and tensors in spacetime.
Mécanique quantique relativiste
En physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Afficher plus