In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands (preferably the smaller) into a set of numbers of powers of two and then creates a table of doublings of the second multiplicand by every value of the set which is summed up to give result of multiplication.
This method may be called mediation and duplation, where mediation means halving one number and duplation means doubling the other number. It is still used in some areas.
The second Egyptian multiplication and division technique was known from the hieratic Moscow and Rhind Mathematical Papyri written in the seventeenth century B.C. by the scribe Ahmes.
Although in ancient Egypt the concept of base 2 did not exist, the algorithm is essentially the same algorithm as long multiplication after the multiplier and multiplicand are converted to binary. The method as interpreted by conversion to binary is therefore still in wide use today as implemented by binary multiplier circuits in modern computer processors.
The ancient Egyptians had laid out tables of a great number of powers of two, rather than recalculating them each time. The decomposition of a number thus consists of finding the powers of two which make it up. The Egyptians knew empirically that a given power of two would only appear once in a number. For the decomposition, they proceeded methodically; they would initially find the largest power of two less than or equal to the number in question, subtract it out and repeat until nothing remained. (The Egyptians did not make use of the number zero in mathematics.)
After the decomposition of the first multiplicand, the person would construct a table of powers of two times the second multiplicand (generally the smaller) from one up to the largest power of two found during the decomposition.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation.
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the multiplicand, as the quantity of the other one, the multiplier; both numbers can be referred to as factors.
In this paper we present a new multiplication algorithm for residues modulo the Mersenne prime 2521−1. Using this approach, on an Intel Haswell Core i7-4770, constant-time variable-base scalar multiplication on NIST’s (and SECG’s) curve P-521 requires ...
Generalised Mersenne Numbers (GMNs) were defined by Solinas in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use in elliptic curve cryptography. Their form is such that modular reduction is extremely efficient, thus making them an attrac ...
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...