In measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
The theorem is also sometimes known as the Carathéodory–Fréchet extension theorem, the Carathéodory–Hopf extension theorem, the Hopf extension theorem and the Hahn–Kolmogorov extension theorem.
Several very similar statements of the theorem can be given. A slightly more involved one, based on semi-rings of sets, is given further down below. A shorter, simpler statement is as follows. In this form, it is often called the Hahn–Kolmogorov theorem.
Let be an algebra of subsets of a set Consider a set function
which is finitely additive, meaning that
for any positive integer and disjoint sets in
Assume that this function satisfies the stronger sigma additivity assumption
for any disjoint family of elements of such that (Functions obeying these two properties are known as pre-measures.) Then,
extends to a measure defined on the -algebra generated by ; that is, there exists a measure
such that its restriction to coincides with
If is -finite, then the extension is unique.
This theorem is remarkable for it allows one to construct a measure by first defining it on a small algebra of sets, where its sigma additivity could be easy to verify, and then this theorem guarantees its extension to a sigma-algebra. The proof of this theorem is not trivial, since it requires extending from an algebra of sets to a potentially much bigger sigma-algebra, guaranteeing that the extension is unique (if is -finite), and moreover that it does not fail to satisfy the sigma-additivity of the original function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dans ce cours on définira et étudiera la notion de mesure et d'intégrale contre une mesure dans un cadre général, généralisant ce qui a été fait en Analyse IV dans le cas réel.
On verra aussi quelques
In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures.
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite.
This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involut ...