Summary
In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a "reflection coefficient". Different specialties have different applications for the term. Reflections of signals on conducting lines and Signal reflection In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z0. The reference impedance used is typically the characteristic impedance of a transmission line that's involved, but one can speak of reflection coefficient without any actual transmission line being present. In terms of the forward and reflected waves determined by the voltage and current, the reflection coefficient is defined as the complex ratio of the voltage of the reflected wave () to that of the incident wave (). This is typically represented with a (capital gamma) and can be written as: It can as well be defined using the currents associated with the reflected and forward waves, but introducing a minus sign to account for the opposite orientations of the two currents: The reflection coefficient may also be established using other field or circuit pairs of quantities whose product defines power resolvable into a forward and reverse wave.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.