Summary
Vacuum engineering is the field of engineering that deals with the practical use of vacuum in industrial and scientific applications. Vacuum may improve the productivity and performance of processes otherwise carried out at normal air pressure, or may make possible processes that could not be done in the presence of air. Vacuum engineering techniques are widely applied in materials processing such as drying or filtering, chemical processing, application of metal coatings to objects, manufacture of electron devices and incandescent lamps, and in scientific research. Vacuum techniques vary depending on the desired vacuum pressure to be achieved. For a "rough" vacuum, over 100 Pascals pressure, conventional methods of analysis, materials, pumps and measuring instruments can be used, whereas ultrahigh vacuum systems use specialized equipment to achieve pressures below one-millionth of one Pascal. At such low pressures, even metals may emit enough gas to cause serious contamination. Vacuum systems usually consist of gauges, vapor jet and pumps, vapor traps and valves along with other extensional piping. A vessel that is operating under vacuum system may be any of these types such as processing tank, steam simulator, particle accelerator, or any other type of space that has an enclosed chamber to maintain the system in less than atmospheric gas pressure. Since a vacuum is created in an enclosed chamber, the consideration of being able to withstand external atmospheric pressure are the usual precaution for this type of design. Along with the effect of buckling or collapsing, the outer shell of vacuum chamber will be carefully evaluated and any sign of deterioration will be corrected by the increase of thickness of the shell itself. The main materials used for vacuum design are usually mild steel, stainless steel, and aluminum. Other sections such as glass are used for gauge glass, view ports, and sometimes electrical insulation. The interior of the vacuum chamber should always be smooth and free of rust and defects.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.