Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely
to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.
The scope of geometric analysis includes both the use of geometrical methods in the study of partial differential equations (when it is also known as "geometric PDE"), and the application of the theory of partial differential equations to geometry. It incorporates problems involving curves and surfaces, or domains with curved boundaries, but also the study of Riemannian manifolds in arbitrary dimension. The calculus of variations is sometimes regarded as part of geometric analysis, because differential equations arising from variational principles have a strong geometric content. Geometric analysis also includes global analysis, which concerns the study of differential equations on manifolds, and the relationship between differential equations and topology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to introduce the student to the basic notion of analysis on metric (measure) spaces, quasiconformal mappings, potential theory on metric spaces, etc. The subjects covered wi
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
The positive energy theorem (also known as the positive mass theorem) refers to a collection of foundational results in general relativity and differential geometry. Its standard form, broadly speaking, asserts that the gravitational energy of an isolated system is nonnegative, and can only be zero when the system has no gravitating objects. Although these statements are often thought of as being primarily physical in nature, they can be formalized as mathematical theorems which can be proven using techniques of differential geometry, partial differential equations, and geometric measure theory.
In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions.
A novel surrogate model based on the Grassmannian diffusion maps (GDMaps) and utilizing geometric harmonics (GH) is developed for predicting the response of complex physical phenomena. The method utilizes GDMaps to obtain a low-dimensional representation o ...
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
Catchments are heterogeneous ecosystems involving several abiotic and biotic processes, where the mutual interactions among water, vegetation, and biogeochemical fluxes take place at different scales. Many biological processes in nature are characterized b ...