Galvanic corrosion (also called bimetallic corrosion or dissimilar metal corrosion) is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices. This phenomenon is named after Italian physician Luigi Galvani (1737-1798).
Dissimilar metals and alloys have different electrode potentials, and when two or more come into contact in an electrolyte, one metal (that is more reactive) acts as anode and the other (that is less reactive) as cathode. The electropotential difference between the reactions at the two electrodes is the driving force for an accelerated attack on the anode metal, which dissolves into the electrolyte. This leads to the metal at the anode corroding more quickly than it otherwise would and corrosion at the cathode being inhibited. The presence of an electrolyte and an electrical conducting path between the metals is essential for galvanic corrosion to occur. The electrolyte provides a means for ion migration whereby ions move to prevent charge build-up that would otherwise stop the reaction. If the electrolyte contains only metal ions that are not easily reduced (such as Na+, Ca2+, K+, Mg2+, or Zn2+), the cathode reaction is the reduction of dissolved H+ to H2 or O2 to OH−.
In some cases, this type of reaction is intentionally encouraged. For example, low-cost household batteries typically contain carbon-zinc cells. As part of a closed circuit (the electron pathway), the zinc within the cell will corrode preferentially (the ion pathway) as an essential part of the battery producing electricity. Another example is the cathodic protection of buried or submerged structures as well as hot water storage tanks. In this case, sacrificial anodes work as part of a galvanic couple, promoting corrosion of the anode, while protecting the cathode metal.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
This course aims at familiarizing the student with state of the art applications of electrochemistry in materials science and technology as well as material requirements for electrochemical engineerin
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the surface of the base metal when immersing the metal in a bath of molten zinc at a temperature of around . When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances.
Cathodic protection (CP; kaeˈTQdIk) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.
This Thesis provides a comprehensive and correlative investigation of the microstructure, chemical state, and electrochemical reactivity of manganese oxide (MnOx) films, aiming to gain a deeper understanding of the deposition and dissolution mechanism of M ...
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...
Washington2024
Fast and uniform ion transport within the solid electrolyte interphase (SEI) is considered a crucial factor for ensuring the long-term stability of metal electrodes. In this study, we present the fabrication of ultrathin artificial interphases consisting o ...