In chemistry and physics, the exchange interaction or exchange splitting (with an exchange energy and exchange term) is a quantum mechanical effect that only occurs between identical particles. Despite sometimes being called an exchange force in an analogy to classical force, it is not a true force as it lacks a force carrier.
The effect is due to the wave function of indistinguishable particles being subject to exchange symmetry, that is, either remaining unchanged (symmetric) or changing sign (antisymmetric) when two particles are exchanged. Both bosons and fermions can experience the exchange interaction. For fermions, this interaction is sometimes called Pauli repulsion and is related to the Pauli exclusion principle. For bosons, the exchange interaction takes the form of an effective attraction that causes identical particles to be found closer together, as in Bose–Einstein condensation.
The exchange interaction alters the expectation value of the distance when the wave functions of two or more indistinguishable particles overlap. This interaction increases (for fermions) or decreases (for bosons) the expectation value of the distance between identical particles (compared to distinguishable particles). Among other consequences, the exchange interaction is responsible for ferromagnetism and the volume of matter. It has no classical analogue.
Exchange interaction effects were discovered independently by physicists Werner Heisenberg and Paul Dirac in 1926.
The exchange interaction is sometimes called the exchange force. However, it is not a true force and should not be confused with the exchange forces produced by the exchange of force carriers, such as the electromagnetic force produced between two electrons by the exchange of a photon, or the strong force between two quarks produced by the exchange of a gluon.
Although sometimes erroneously described as a force, the exchange interaction is a purely quantum mechanical effect unlike other forces.
Quantum mechanical particles are classified as bosons or fermions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.
In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. This is, like ferromagnetism and ferrimagnetism, a manifestation of ordered magnetism. The phenomenon of antiferromagnetism was first introduced by Lev Landau in 1933.
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
Covers the coherent control of a single electron spin and explores spin qubits in quantum dots, coherence times, and achieving quantum computing.
Explores the fundamentals of exchange interactions, including intra-atomic and inter-atomic exchange, spin-orbit coupling, and Dzyaloshinskii-Moryia coupling.
Explains singlet and triplet states, exchange energy, and interactions in metallic hydrogen.
We show that including pairing and repulsion into the description of one-dimensional spinless fermions, as in the domain wall theory of commensurate melting or the interacting Kitaev chain, leads, for strong enough repulsion, to a line of critical points i ...
AMER PHYSICAL SOC2023
, ,
Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic ...
We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...