En physique, l'interaction d'échange (avec une énergie et un terme d'échange) est un effet en mécanique quantique qui se produit seulement entre particules identiques. L'interaction d'échange modifie la valeur moyenne de la distance entre deux ou plusieurs particules indistinguables lorsque leur fonctions d'onde se chevauchent. A cause de l’interaction d’échange cette distance va augmenter (pour les fermions) ou diminuer (pour les bosons) par rapport au cas où les particules seraient distinguables.
En dépit d'être parfois appelée force d'échange par analogie avec la force classique, ce n’est pas une véritable force car il manque le vecteur de force.
L'interaction d'échange est aussi appelée force d'échange, mais est à distinguer des forces d’échange produites par l'échange de porteurs de forces, comme la force électromagnétique produite entre deux électrons par l'échange d'un photon, ou la force forte entre deux quarks produite par l'échange d'un gluon. L'interaction d'échange est un effet qui s'explique par la mécanique quantique.
Cet effet est dû à la fonction d'onde des particules indiscernables, les rendant sujet à un échange de symétrie, soit en gardant leur signe (symétrie), soit en changeant de signe (antisymétrie), lorsque deux particules sont échangées. Bosons et fermions peuvent ainsi subir une interaction d’échange :
Pour les fermions, l’effet est parfois appelé « répulsion de Pauli » et est lié au principe d'exclusion de Pauli. Pour les bosons, l'interaction d'échange prend la forme d'une attraction efficace qui cause un regroupement des particules identiques, comme dans la condensation de Bose-Einstein.
Les effets de l'interaction d'échange ont été découverts indépendamment par les physiciens Werner Heisenberg et Paul Dirac en 1926. Entre autres conséquences, l'interaction d'échange est responsable du ferromagnétisme et du volume de la matière.
L'interaction d'échange est parfois appelée force d'échange. Ce n’est cependant pas une véritable force et cette interaction ne doit pas être confondue avec les forces d’échange produites par l'échange de vecteurs de force.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
Couvre le contrôle cohérent d'un seul spin d'électron et explore les qubits de spin dans les points quantiques, les temps de cohérence et la réalisation du calcul quantique.
Explore les fondamentaux des interactions d'échange, y compris l'échange intra-atomique et inter-atomique, le couplage spin-orbite et le couplage Dzyaloshinskii-Moryia.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Dans la théorie du magnétisme quantique, l'hamiltonien de Heisenberg décrit un ensemble de moments magnétiques localisés en interaction. Cet hamiltonien s'écrit : où est le magnéton de Bohr, est le rapport gyromagnétique du i-ème moment localisé, est un opérateur de spin, est le champ magnétique externe, et est la constante d'échange. Pour l'interaction est antiferromagnétique et pour elle est ferromagnétique. En général, les sites i sont placés sur les nœuds d'un réseau régulier.
L'antiferromagnétisme est une propriété de certains milieux magnétiques prédite par Louis Néelen 1936. Contrairement aux matériaux ferromagnétiques, dans les matériaux antiferromagnétiques, l’interaction d’échange entre les atomes voisins favorise un alignement antiparallèle des moments magnétiques atomiques. Dans l'état fondamental, les moments magnétiques moyens sur les sous-réseaux distincts peuvent être non-nuls mais se compenser à l'échelle macroscopique. L'aimantation totale du matériau est alors nulle.
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
, ,
Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic ...
2023
,
We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...
Amer Physical Soc2024
,
We show that including pairing and repulsion into the description of one-dimensional spinless fermions, as in the domain wall theory of commensurate melting or the interacting Kitaev chain, leads, for strong enough repulsion, to a line of critical points i ...