Ray casting is the methodological basis for 3D CAD/CAM solid modeling and image rendering. It is essentially the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the 3D scene. The term "Ray Casting" was introduced by Scott Roth while at the General Motors Research Labs from 1978–1980. His paper, "Ray Casting for Modeling Solids", describes modeled solid objects by combining primitive solids, such as blocks and cylinders, using the set operators union (+), intersection (&), and difference (-). The general idea of using these binary operators for solid modeling is largely due to Voelcker and Requicha's geometric modelling group at the University of Rochester. See solid modeling for a broad overview of solid modeling methods. This figure on the right shows a U-Joint modeled from cylinders and blocks in a binary tree using Roth's ray casting system in 1979.
Before ray casting (and ray tracing), computer graphics algorithms projected surfaces or edges (e.g., lines) from the 3D world to the image plane where visibility logic had to be applied. The world-to-image plane projection is a 3D homogeneous coordinate system transformation (aka: 3D projection, affine transformation, or projective transform (Homography)). Rendering an image in that way is difficult to achieve with hidden surface/edge removal. Plus, silhouettes of curved surfaces have to be explicitly solved for whereas it is an implicit by-product of ray casting, so there is no need to explicitly solve for it whenever the view changes.
Ray casting greatly simplified image rendering of 3D objects and scenes because a line transforms to a line. So, instead of projecting curved edges and surfaces in the 3D scene to the 2D image plane, transformed lines (rays) are intersected with the objects in the scene. A homogeneous coordinate transformation is represented by 4x4 matrix.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry
synthesis, and animation. They design and implement their own interactive graphics program
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
Covers the implementation of ray intersections with planes, cylinders, and spheres.
Covers determining object and image positions using a converging lens and scale drawings.
Discusses maximizing light intensity and calculating intensity ratios, as well as the apparent depth of a basin.
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
In computer science, binary space partitioning (BSP) is a method for space partitioning which recursively subdivides a Euclidean space into two convex sets by using hyperplanes as partitions. This process of subdividing gives rise to a representation of objects within the space in the form of a tree data structure known as a BSP tree. Binary space partitioning was developed in the context of 3D computer graphics in 1969.
In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms (such as path tracing), which handle all types of light paths, typical radiosity only account for paths (represented by the code "LD*E") which leave a light source and are reflected diffusely some number of times (possibly zero) before hitting the eye.
Raytraverse is a python based software that helps to efficiently organize and guide the sampling of a lighting simulation within a scene. Radiance is embedded within Raytraverse to provide accurate and efficient solutions for each sampled ray. This talk wi ...
To overcome the multipath interference in locating transient electromagnetic (EM) radiation sources in an indoor environment, we propose a criterion that calculates the correlation between back-propagated signals from observation points, to be used in EM t ...
2021
,
Interactive simulation of ultrasound imaging greatly facilitates sonography training. Although ray-tracing based methods have shown promising results, obtaining realistic images requires substantial modeling effort and manual parameter tuning. In addition, ...