Summary
In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (X, Σ, μ) is complete if and only if The need to consider questions of completeness can be illustrated by considering the problem of product spaces. Suppose that we have already constructed Lebesgue measure on the real line: denote this measure space by We now wish to construct some two-dimensional Lebesgue measure on the plane as a product measure. Naively, we would take the sigma-algebra on to be the smallest sigma-algebra containing all measurable "rectangles" for While this approach does define a measure space, it has a flaw. Since every singleton set has one-dimensional Lebesgue measure zero, for subset of However, suppose that is a non-measurable subset of the real line, such as the Vitali set. Then the -measure of is not defined but and this larger set does have -measure zero. So this "two-dimensional Lebesgue measure" as just defined is not complete, and some kind of completion procedure is required. Given a (possibly incomplete) measure space (X, Σ, μ), there is an extension (X, Σ0, μ0) of this measure space that is complete. The smallest such extension (i.e. the smallest σ-algebra Σ0) is called the completion of the measure space. The completion can be constructed as follows: let Z be the set of all the subsets of the zero-μ-measure subsets of X (intuitively, those elements of Z that are not already in Σ are the ones preventing completeness from holding true); let Σ0 be the σ-algebra generated by Σ and Z (i.e. the smallest σ-algebra that contains every element of Σ and of Z); μ has an extension μ0 to Σ0 (which is unique if μ is σ-finite), called the outer measure of μ, given by the infimum Then (X, Σ0, μ0) is a complete measure space, and is the completion of (X, Σ, μ).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (8)
Number line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers.
Σ-finite measure
In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.
Fubini's theorem
In mathematical analysis, Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value. Fubini's theorem implies that two iterated integrals are equal to the corresponding double integral across its integrands.
Show more