En mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres. On peut changer l'ordre d'intégration si l'intégrable double de la valeur absolue de la fonction est finie :
théorème|Théorème de Fubini-Lebesgue|Soient et deux espaces mesurés complets (non nécessairement σ-finis) et l'espace mesurable produit muni dune'' mesure produit ζ. Si
est ζ-intégrable, alors les fonctions
(définies presque partout) sont respectivement μ- et ν-intégrables et
Le premier théorème est faux si l'on ne suppose pas les mesures σ-finies.
Dans le cas particulier où l'un des deux espaces est N muni de la tribu discrète et de la mesure de comptage, on retrouve respectivement le théorème de convergence monotone et le corollaire du théorème de convergence dominée pour les séries de fonctions.
Lorsque les deux mesures sont σ-finies, l'utilisation du théorème de Fubini-Tonelli permet souvent de démontrer qu'une fonction mesurable est intégrable. En effet, pour -mesurable, on peut appliquer le théorème de Fubini-Tonelli à , ce qui donne
donc si l'une des intégrales est finie, alors toutes trois le sont et est intégrable.
On a alors d'après le théorème de Fubini-Lebesgue
ce qui facilite le calcul de l'intégrale.
Le produit de convolution de deux fonctions intégrables est lui-même intégrable.
Calcul de l'intégrale de Gauss, .
Considérons
On a
En échangeant les rôles de et , on a donc
ce qui — puisque le théorème de Fubini ne s'applique pas ici — prouve que
Considérons l'ensemble . Munissons-le d'une part de la tribu borélienne et de la mesure de Lebesgue et d'autre part de la tribu discrète et de la mesure de comptage .
La diagonale est un fermé de , donc
La fonction indicatrice 1'''Δ est donc mesurable sur l'espace produit considéré.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue. Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques. Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f.
En mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres.
En mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.