Spacecraft operating in the inner Solar System usually rely on the use of power electronics-managed photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient power within current solar technology and spacecraft mass limitations, so radioisotope thermoelectric generators (RTGs) are instead used as a power source.
The first practical silicon-based solar cells were introduced by Russell Shoemaker Ohl, a researcher at Bell Labs in 1940. It was only 1% efficient. In April 25, 1954 in Murray Hill, New Jersey. They demonstrated their solar panel by using it to power a small toy Ferris wheel and a solar powered radio transmitter.
They were initially about 6% efficient, but improvements began to raise this number almost immediately. Bell had been interested in the idea as a system to provide power at remote telephone repeater stations, but the cost of the devices was far too high to be practical in this role. Aside from small experimental kits and uses, the cells remained largely unused.
This changed with the development of the first US spacecraft, the Vanguard 1 satellite in 1958. Calculations by Dr. Hans Ziegler demonstrated that a system using solar cells recharging a battery pack would provide the required power in a much lighter overall package than using just a battery. The satellite was powered by silicon solar cells with ≈10% conversion efficiency.
The success of the Vanguard system inspired Spectrolab, an optics company, to take up the development of solar cells specifically designed for space applications. They had their first major design win on Pioneer 1 in 1958, and would later be the first cells to travel to the Moon, on the Apollo 11 mission's ALSEP package. As satellites grew in size and power, Spectrolab began looking for ways to introduce much more powerful cells. This led them to pioneer the development of multi-junction cells that increased efficiency from around 12% for their 1970s silicon cells to about 30% for their current gallium arsenide (GaAs) cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
The course presents and analyses the different systems, architectures and components of spacecraft avionics (on board data handling and processing systems) controlling and commanding spacecraft and pa
A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.
Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Materials that efficiently promote the thermodynamically uphill water-splitting reaction under solar illumination are essential for generating carbon-free ("green") hydrogen. Mapping out the combinatorial space of potential photocatalysts for this reaction ...
It is hard to overestimate the role of winter roads in the land logistics of the northern regions. In recent years, climate change has not only significantly reduced the service life of winter roads, but also made them less predictable. This forces transpo ...
Perovskite solar cells (PSCs) have garnered significant attention within the photovoltaic research community due to their remarkable progress in just one decade. Among the device configurations, the p-i-n structured PSC offers several advantages, including ...