In mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and . In a category, it is equivalent to require that the hom functor carries monomorphisms in to surjective set maps. The notion of injectivity was first formulated for , and this is still one of its primary areas of application. When is an abelian category, an object Q of is injective if and only if its hom functor HomC(–,Q) is exact. If is an exact sequence in such that Q is injective, then the sequence splits. The category is said to have enough injectives if for every object X of , there exists a monomorphism from X to an injective object. A monomorphism g in is called an essential monomorphism if for any morphism f, the composite fg is a monomorphism only if f is a monomorphism. If g is an essential monomorphism with domain X and an injective codomain G, then G is called an injective hull of X. The injective hull is then uniquely determined by X up to a non-canonical isomorphism. In the category of abelian groups and group homomorphisms, Ab, an injective object is necessarily a divisible group. Assuming the axiom of choice, the notions are equivalent. In the category of (left) modules and module homomorphisms, R-Mod, an injective object is an injective module. R-Mod has injective hulls (as a consequence, R-Mod has enough injectives). In the , Met, an injective object is an injective metric space, and the injective hull of a metric space is its tight span. In the category of T0 spaces and continuous mappings, an injective object is always a Scott topology on a continuous lattice, and therefore it is always sober and locally compact.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (27)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Show more
Related publications (15)
Related concepts (11)
Category of modules
In algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
Ext functor
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another. In the special case of abelian groups, Ext was introduced by Reinhold Baer (1934).
Injective module
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is to that of projective modules.
Show more
Related MOOCs (19)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.