In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another. In the special case of abelian groups, Ext was introduced by Reinhold Baer (1934). It was named by Samuel Eilenberg and Saunders MacLane (1942), and applied to topology (the universal coefficient theorem for cohomology). For modules over any ring, Ext was defined by Henri Cartan and Eilenberg in their 1956 book Homological Algebra. Let R be a ring and let R-Mod be the of modules over R. (One can take this to mean either left R-modules or right R-modules.) For a fixed R-module A, let T(B) = HomR(A, B) for B in R-Mod. (Here HomR(A, B) is the abelian group of R-linear maps from A to B; this is an R-module if R is commutative.) This is a left exact functor from R-Mod to the Ab, and so it has right derived functors RiT. The Ext groups are the abelian groups defined by for an integer i. By definition, this means: take any injective resolution remove the term B, and form the cochain complex: For each integer i, Ext_i(A, B) is the cohomology of this complex at position i. It is zero for i negative. For example, Ext_0(A, B) is the kernel of the map HomR(A, I0) → HomR(A, I1), which is isomorphic to HomR(A, B). An alternative definition uses the functor G(A)=HomR(A, B), for a fixed R-module B. This is a contravariant functor, which can be viewed as a left exact functor from the (R-Mod)op to Ab. The Ext groups are defined as the right derived functors RiG: That is, choose any projective resolution remove the term A, and form the cochain complex: Then Ext_i(A, B) is the cohomology of this complex at position i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Afficher plus
Séances de cours associées (33)
Homomorphismes et résolutions projectives
Couvre les homomorphismes, les modules projectifs et les résolutions dans les complexes en chaîne.
Produit Cross en Cohomologie
Explore le produit croisé en cohomologie, couvrant ses propriétés et applications en homotopie.
Modèles acycliques: Produit de coupe et Cohomologie
Couvre le produit de la tasse sur la cohomologie, les modèles acycliques et le théorème universel des coefficients.
Afficher plus
Publications associées (24)

Conditional Flatness, Fiberwise Localizations, And Admissible Reflections

Jérôme Scherer

We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
CAMBRIDGE UNIV PRESS2023

Correspondence functors and duality

Jacques Thévenaz, Serge Bouc

A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023

Cohomology in singular blocks of parabolic category O

Jonathan Gruber

We determine the dimensions of Ext -groups between simple modules and dual generalized Verma modules in singular blocks of parabolic versions of category O for complex semisimple Lie algebras and affine Kac-Moody algebras. ...
2023
Afficher plus
Concepts associés (22)
Cohomologie des faisceaux
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Foncteur dérivé
En mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
Injective object
In mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.