Concept

Purely inseparable extension

In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions. An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial. If F is any field, the trivial extension is purely inseparable; for the field F to possess a non-trivial purely inseparable extension, it must be imperfect as outlined in the above section. Several equivalent and more concrete definitions for the notion of a purely inseparable extension are known. If is an algebraic extension with (non-zero) prime characteristic p, then the following are equivalent: E is purely inseparable over F. For each element , there exists such that . Each element of E has minimal polynomial over F of the form for some integer and some element . It follows from the above equivalent characterizations that if (for F a field of prime characteristic) such that for some integer , then E is purely inseparable over F. (To see this, note that the set of all x such that for some forms a field; since this field contains both and F, it must be E, and by condition 2 above, must be purely inseparable.) If F is an imperfect field of prime characteristic p, choose such that a is not a pth power in F, and let f(X) = Xp − a. Then f has no root in F, and so if E is a splitting field for f over F, it is possible to choose with . In particular, and by the property stated in the paragraph directly above, it follows that is a non-trivial purely inseparable extension (in fact, , and so is automatically a purely inseparable extension). Purely inseparable extensions do occur naturally; for example, they occur in algebraic geometry over fields of prime characteristic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.