In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, with q a power of p and a in k. Purely inseparable extensions are sometimes called radicial extensions, which should not be confused with the similar-sounding but more general notion of radical extensions.
An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial. If F is any field, the trivial extension is purely inseparable; for the field F to possess a non-trivial purely inseparable extension, it must be imperfect as outlined in the above section.
Several equivalent and more concrete definitions for the notion of a purely inseparable extension are known. If is an algebraic extension with (non-zero) prime characteristic p, then the following are equivalent:
E is purely inseparable over F.
For each element , there exists such that .
Each element of E has minimal polynomial over F of the form for some integer and some element .
It follows from the above equivalent characterizations that if (for F a field of prime characteristic) such that for some integer , then E is purely inseparable over F. (To see this, note that the set of all x such that for some forms a field; since this field contains both and F, it must be E, and by condition 2 above, must be purely inseparable.)
If F is an imperfect field of prime characteristic p, choose such that a is not a pth power in F, and let f(X) = Xp − a. Then f has no root in F, and so if E is a splitting field for f over F, it is possible to choose with . In particular, and by the property stated in the paragraph directly above, it follows that is a non-trivial purely inseparable extension (in fact, , and so is automatically a purely inseparable extension).
Purely inseparable extensions do occur naturally; for example, they occur in algebraic geometry over fields of prime characteristic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry.
The seminar aims at discussing recent research papers in the field of deep learning,
implementing the transferability/adaptability of the proposed approaches to applications in the field of research
C'est un cours introductoire dans la théorie d'anneau et de corps.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
2020
The segmentation of the retinal vasculature from eye fundus images represents one of the most fundamental tasks in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures ...
This paper concerns the maximum-likelihood channel estimation for MIMO systems with orthogonal space-time block codes when the finite alphabet constraint of the signal constellation is relaxed. We study the channel coefficients estimation subspace generate ...