In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1, ..., xN has a low discrepancy.
Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B, as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of B (hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) and combined (usually by taking the worst value).
Low-discrepancy sequences are also called quasirandom sequences, due to their common use as a replacement of uniformly distributed random numbers.
The "quasi" modifier is used to denote more clearly that the values of a low-discrepancy sequence are neither random nor pseudorandom, but such sequences share some properties of random variables and in certain applications such as the quasi-Monte Carlo method their lower discrepancy is an important advantage.
Quasirandom numbers have an advantage over pure random numbers in that they cover the domain of interest quickly and evenly.
Two useful applications are in finding the characteristic function of a probability density function, and in finding the derivative function of a deterministic function with a small amount of noise. Quasirandom numbers allow higher-order moments to be calculated to high accuracy very quickly.
Applications that don't involve sorting would be in finding the mean, standard deviation, skewness and kurtosis of a statistical distribution, and in finding the integral and global maxima and minima of difficult deterministic functions. Quasirandom numbers can also be used for providing starting points for deterministic algorithms that only work locally, such as Newton–Raphson iteration.
Quasirandom numbers can also be combined with search algorithms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
A numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice roll or the digits of π exhibit statistical randomness. Statistical randomness does not necessarily imply "true" randomness, i.e., objective unpredictability. Pseudorandomness is sufficient for many uses, such as statistics, hence the name statistical randomness. Global randomness and local randomness are different.
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.
Modern digital connectivity has necessitated the creation of robust methods for securely storing and transferring data. At the heart of all security infrastructure is the random number generator (RNG). While random numbers find use in a variety of applicat ...
We derive confidence intervals (CIs) and confidence sequences (CSs) for the classical problem of estimating a bounded mean. Our approach generalizes and improves on the celebrated Chernoff method, yielding the best closed-form "empirical-Bernstein" CSs and ...
In this work, linear and nonlinear collisionless electrostatic simulation studies of the standard and short wavelength ion temperature gradient mode (SWITG) for experimental profiles and parameters of ADITYA-U tokamak are performed using the linear global ...