Summary
In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: A complex logarithm of a nonzero complex number , defined to be any complex number for which . Such a number is denoted by . If is given in polar form as , where and are real numbers with , then is one logarithm of , and all the complex logarithms of are exactly the numbers of the form for integers . These logarithms are equally spaced along a vertical line in the complex plane. A complex-valued function , defined on some subset of the set of nonzero complex numbers, satisfying for all in . Such complex logarithm functions are analogous to the real logarithm function , which is the inverse of the real exponential function and hence satisfies eln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of , or by the process of analytic continuation. There is no continuous complex logarithm function defined on all of . Ways of dealing with this include branches, the associated Riemann surface, and partial inverses of the complex exponential function. The principal value defines a particular complex logarithm function that is continuous except along the negative real axis; on the complex plane with the negative real numbers and 0 removed, it is the analytic continuation of the (real) natural logarithm. For a function to have an inverse, it must map distinct values to distinct values; that is, it must be injective. But the complex exponential function is not injective, because for any complex number and integer , since adding to has the effect of rotating counterclockwise radians. So the points equally spaced along a vertical line, are all mapped to the same number by the exponential function. This means that the exponential function does not have an inverse function in the standard sense. There are two solutions to this problem.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (32)
MATH-200: Analysis III
Apprendre les bases de l'analyse vectorielle et de l'analyse complexe.
MATH-207(c): Analysis IV
This course is an introduction to the theory of complex analysis, Fourier series and Fourier transforms (including for tempered distributions), the Laplace transform, and their uses to solve ordinary
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related publications (78)
Related concepts (16)
Argument (complex analysis)
In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in Figure 1. It is a multivalued function operating on the nonzero complex numbers. To define a single-valued function, the principal value of the argument (sometimes denoted Arg z) is used. It is often chosen to be the unique value of the argument that lies within the interval .
Multivalued function
In mathematics, a multivalued function, also called multifunction and many-valued function, is a set-valued function with continuity properties that allow considering it locally as an ordinary function. Multivalued functions arise commonly in applications of the implicit function theorem, since this theorem can be viewed as asserting the existence of a multivalued function. In particular, the inverse function of a differentiable function is a multivalued function, and is single-valued only when the original function is monotonic.
Inverse hyperbolic functions
In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-.
Show more
Related MOOCs (11)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more